
Alberi

CORDA – Informatica

A. Ferrari

Testi da

Marco Bernardo Edoardo Bontà

Dispense del Corso di

Algoritmi e Strutture Dati

Albero - definizione

Albero

Figli, fratelli, nodi, foglie

Grado, livello, altezza, larghezza

Albero binario

Trasformazione

da albero ad albero binario

Rappresentazione

Esercizio

 Definire una struttura dati che permetta di rappresentare
un albero binario

 Per semplicità l’informazione associata ad ogni nodo si

considera che sia un numero intero

Algoritmi di visita

 La visita consiste nell’accesso una e una sola volta a tutti
i nodi dell’albero.

 Per gli alberi binari sono possibili più algoritmi di visita che

generano sequenze diverse (per ordine) di nodi

 visita in ordine anticipato

 visita in ordine simmetrico

 visita in ordine posticipato (differito)

Visita in ordine anticipato

 Visita la radice

 Visita il sottoalbero sinistro

in ordine anticipato

 Visita il sottoalbero destro

in ordine anticipato

 Lista dei nodi:

Visita in ordine simmetrico

 Visita il sottoalbero sinistro

in ordine simmetrico

 Visita la radice

 Visita il sottoalbero destro

in ordine simmetrico

 Lista dei nodi:

Visita in ordine posticipato

 Visita il sottoalbero sinistro

in ordine posticipato

 Visita il sottoalbero destro

in ordine posticipato

 Visita la radice

 Lista dei nodi:

Alberi ed espressioni

 Ogni nodo che contiene

un operatore è radice di

un sottoalbero

 Ogni foglia contiene un

valore costante o una

variabile

Esercizio

 Definire la sequenza di

nodi che si ottiene

visitando l’albero in ordine

 Anticipato

 Simmetrico

 Differito

alberi – espressioni – algoritmi di visita

- matematica – informatica ???

 Jan Łukasiewicz
 http://it.wikipedia.org/wiki/Jan_%C5%81ukasiewicz

 Notazione polacca
 http://it.wikipedia.org/wiki/Notazione_polacca

http://it.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
http://it.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
http://it.wikipedia.org/wiki/Notazione_polacca
http://it.wikipedia.org/wiki/Notazione_polacca

Algoritmi di ricerca

 Con opportune modifiche si può adattare un qualunque
algoritmo di visita per ottenere un algoritmo di ricerca

 Nel caso pessimo la ricerca attraverserà tutti nodi

dell’albero quindi avrà complessità O(n)

Alberi binari di ricerca

 Un albero binario di ricerca è un albero binario tale che:

 per ogni nodo che contiene una chiave di valore k

 ogni nodo del suo sottoalbero sinistro contiene una chiave di valore ≤ k

 ogni nodo del suo sottoalbero destro contiene una chiave di valore ≥ k

Ricerca in alberi binari di ricerca

 Non è necessario visitare tutti i nodi

 Basta fare un unico percorso tra quelli che partono dalla

radice, scendendo ad ogni nodo incontrato che non

contiene il valore dato a sinistra o a destra a seconda
che il valore dato sia minore o maggiore,

rispettivamente, della chiave contenuta nel nodo

 La complessità della ricerca dipende quindi dalla

profondità dell’albero

Esercizio 1

 Implementare (in linguaggio C) la struttura dati che
permetta di implementare un albero binario

 Implementare gli algoritmi di

 inserimento

 visita in ordine anticipato, simmetrico, differito

 ricerca (dato il valore dell’informazione restituire il Nodo)

 eliminazione di un nodo

Albero binario – linguaggio C

struct Nodo{

 int key; // informazione associata al Nodo

 struct Nodo* left, right; // sottoalbero sn e ds

};

// L’albero è un puntatore alla radice

// o NULL se vuoto)

typedef Nodo* AlberoBin;

Albero binario in C - utilizzo

// Creazione di una lista di due nodi

struct Nodo* n1 = malloc(sizeof(Nodo));

struct Nodo* n2 = malloc(sizeof(Nodo));

struct Nodo* n3 = malloc(sizeof(Nodo));

AlberoBin alb;

n1->key = 33; n1->left = n2; n1->right = n3;

n2->key = 12; n2->left = NULL; n2->right = NULL;

n3->key = 45; n3->left = NULL; n3->right = NULL;

alb = n1;

// Inserimento di un nuovo nodo come radice

Struct Nodo* n4 = malloc(sizeof(Nodo));

n4->key = 14; n4->left = alb; n4->right = NULL;

alb = n4;

Esercizio 2

 Implementare (in linguaggio C) la struttura dati che
permetta di implementare un albero binario di ricerca

 Implementare gli algoritmi di

 inserimento

 visita in ordine anticipato, simmetrico, differito

 ricerca (dato il valore dell’informazione restituire il Nodo)

 eliminazione di un nodo (vedi suggerimenti)

Eliminazione di un nodo

 L’algoritmo di rimozione di un valore da un albero binario di ricerca
deve garantire che l’albero binario ottenuto a seguito della
rimozione sia ancora di ricerca.

 Se il nodo contenente il valore da rimuovere è una foglia, basta
eliminarlo.

 Se il nodo contenente il valore da rimuovere ha un solo figlio, basta
eliminarlo collegando suo padre direttamente a suo figlio.

 Se il nodo contenente il valore da rimuovere ha ambedue i figli, si
procede sostituendone il valore con quello del nodo più a destra
del suo sottoalbero sinistro, in quanto tale nodo contiene la
massima chiave minore di quella del nodo da rimuovere (in
alternativa, si può prendere il nodo più a sinistra del sottoalbero
destro)

B-Albero (B-Tree)

 Struttura dati che permette la rapida localizzazione dei file
(Records o keys)

 Deriva dagli alberi di ricerca, in quanto ogni chiave
appartenente al sottoalbero sinistro di un nodo è di valore
inferiore rispetto a ogni chiave appartenente ai sottoalberi
alla sua destra

 E’ garantito il bilanciamento: per ogni nodo, le altezze dei
sottoalberi destro e sinistro differiscono al più di una unità

 Utilizzati spesso nell'ambito dei database, in quanto
permettono di accedere ai nodi in maniera efficiente sia nel
caso essi siano disponibili in memoria centrale o in memoria
di massa

B-Tree

